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ABSTRACT

Instance-level image segmentation provides rich information crucial
for scene understanding in a variety of real-world applications. In this
paper, we evaluate multiple crowdsourced algorithms for the image
segmentation problem, including novel worker-aggregation-based
methods and retrieval-based methods from prior work. We charac-
terize the different types of worker errors observed in crowdsourced
segmentation, and present a clustering algorithm as a preprocess-
ing step that is able to capture and eliminate errors arising due to
workers having different semantic perspectives. We demonstrate that
aggregation-based algorithms attain higher accuracies than exist-
ing retrieval-based approaches, while scaling better with increasing
numbers of worker segmentations.

1 INTRODUCTION

Precise, instance-level object segmentation is crucial for identifying
and tracking objects in a variety of real-world emergent applica-
tions of autonomy, including robotics [13], image organization and
retrieval [21], and medicine [10]. To this end, there has been a lot
of work on employing crowdsourcing to generate training data for
segmentation, including Pascal-VOC [6], LabelMe [18], OpenSur-
faces [3], and MS-COCO [11]. Unfortunately, raw data collected
from the crowd is known to be noisy due to varying degrees of
worker skills, attention, and motivation [2, 20].

To deal with these challenges, many have employed heuristics
indicative of crowdsourced segmentation quality to pick the best
worker-provided segmentation [17, 19]. However, this approach
ends up discarding the majority of the worker segmentations and is
limited by what the best worker can do. The contributions of this
paper is as follows:

e We introduce a novel class of aggregation-based methods that
incorporates portions of segmentations from multiple workers
into a combined one described in Section 4. By overlaying
worker segmentations on top of each other, we can decompose
the image into non-overlapping tiles, where each tile has
some workers who believe this tile belongs to the object, and
others who do not. Each tile can be treated as an independent
boolean question, deriving an answer from a worker—does
this tile belong to the object or not, following which we may
be able to apply Expectation-Maximization (EM) [5] to derive
maximum likelihood tiles and worker accuracies, a greedy
approach for tile picking based on worker fraction votes, and
simple majority vote aggregation.

o To our surprise, despite the intuitive simplicity of aggregation-
based methods, we have not seen this class of algorithms
described or evaluated in prior work. We evaluate this class of

Akash Das Sarma
Facebook, Inc.
akashds @fb.com

Aditya Parameswaran
University of Illinois,
Urbana-Champaign
adityagp@illinois.edu

algorithms against existing methods in Section 7 and found
that it performs much better than existing approaches

o We formally characterize the types of worker error in crowd-
sourced image segmentation in Section 3 and describe a
well-known multiple perspective issue in crowdsourced im-
age segmentation [8, 12, 17], where workers often segment
the wrong objects or erroneously include or exclude large
semantically-ambiguous portions of an object in the resulting
segmentation.To address this issue, in Section 5, we develop
a clustering-based solution which can be applied as a prepro-
cessing step to any quality evaluation methods.

2 RELATED WORK
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Figure 1: Taxonomy of quality evaluation algorithms for crowdsourced
segmentation, including existing methods (blue) and a novel class of al-
gorithms proposed in this paper (yellow).

As shown in Figure 1, quality evaluation methods for crowd-
sourced segmentation can be classified into two categories:
Retrieval-based methods pick the “best” worker segmentation based
on some scoring criteria that evaluates the quality of each segmenta-
tion, including vision information [14, 19], and click-stream behav-
ior [4, 15, 17].

Aggregation-based methods combine multiple worker segmenta-
tions to produce a final segmentation that is not restricted to any
single worker segmentation. An aggregation-based majority vote
approach was employed in Sameki et al. [15] to create an expert-
established gold standard for characterizing their dataset and algo-
rithmic accuracies, rather than for segmentation quality evaluation
as described here.

Vision-based methods There has been a lot of prior work in seg-
menting objects based on color boundaries[7, 22]. These approaches,
however, are typically non-exact, and far from robust. Furthermore,
while they segment the entire image into several disjoint pieces, they
do not serve to identify objects. Another class of prior works aim
to segment specific semantic objects for objects of a specified type
(e.g. cars, people)[1, 12, 23]. Object segmentation using purely au-
tomated techniques would require training computer vision models
on specific object types.

Orthogonal methods to improve segmentation quality include
periodic verification [6, 12], specialized interfaces [16], and vision-
based supervision [9, 14]. These methods could be used for quality



improvement on top of any of the algorithms in this paper. Since
these policy-based methods are often interface-dependent or require
expensive expert-drawn ground-truth annotations or vision informa-
tion, their results are not easily reproducible.

3 ERROR ANALYSIS

On collecting and analyzing a number of crowdsourced segmen-
tations (described in Section 6.1), we found that common worker
segmentation errors can be classified into three types:

o Semantic Ambiguity: workers have differing opinions on
whether particular regions belong to an object (Figure 2
left: annotations around ‘flower and vase’ when ‘vase’ is
requested);

o Semantic Mistake: workers annotate the wrong object en-
tirely (Figure 2 right: annotations around ‘turtle’ and ‘monitor’
when ‘computer’ is requested.)

e Boundary Imperfection: workers make unintentional mis-
takes while drawing the boundaries, either due to low image
resolution, small area of the object, or lack of drawing skills
(Figure 3 left: imprecision around the ‘dog’ object).

Semantic ambiguity and mistakes have also been observed in
prior work [8, 12, 17], which noted that disagreement in worker
responses can come from questions that are ambiguous or difficult
to answer, such as segmenting a individual person from a crowd.
Since there are multiple workers annotating each object, each object
can suffer from multiple types of error: we found that out of the 46
objects in our dataset, 9 objects suffered from type one error and
18 objects from type two error. Almost all objects suffer from some
form of type three error of varying degrees of imprecision around
the object boundary. The main evaluation methods highlighted in
Section 4 focuses on resolving the imprecise, “sloppy” bounding box
errors. In Section 5, we discuss a preprocessing method eliminates
semantic ambiguities and errors.
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Figure 2: Examples of common worker mistakes.

4 FIXING BOUNDARY IMPERFECTIONS
4.1 Tile Data Model

At the heart of our aggregation techniques is a tile data representa-
tion. A tile is the smallest non-overlapping discrete unit created by
overlaying all of the workers’ segmentations on top of each other.
The tile representation allows us to aggregate segmentations from
multiple workers, rather than being restricted to a single worker’s
segmentation. This allows us to fix one worker’s errors with help
from another worker’s segmentation. In Figure 3 (right), we display
three worker segmentations for a toy example. Worker 1’s segmenta-
tion is represented in pink, worker 2’s segmentation in yellow, and
worker 3’s segmentation in blue. These segmentations overlap result-
ing in a partitioning or tiling of the image with 6 distinct resulting

tiles. For instance, tile #; is the portion of worker 1’s segmentation
that is not contained in worker 2 or worker 3’s segmentations, tile
t is the intersection of all three workers’ segmentations, and #3 is
the intersection of worker 2 and worker 3’s segmentations excluding
worker 1’s segmentation. Any subset of these 6 tiles can contribute
towards the final segmentation.

Tile-based Inference
[Jworker 1 [Jworker 3 (5 worker example)

worker 2 --- object boundary

Figure 3: Left: Toy example demonstrating tiles created by three work-
ers’ segmentations around a dumbell object delineated by the black dot-
ted line. Right: Segmentation boundaries drawn by five workers shown
in red. Overlaid segmentation creates a mask where the color indicates
the number of workers who voted for the tile region.

The simple but powerful idea of tiles also allows us to reformulate
our problem from one of “generating a segmentation” to a setting
that is much more familiar to crowdsourcing researchers. Since tiles
are the lowest granularity units created by overlaying all workers’
segmentations on top of each other, each tile is either completely
contained within or outside a given worker segmentation. Specif-
ically, we can regard a worker segmentation as multiple boolean
responses where they have voted ‘yes’ or ‘no’ to every tile indepen-
dently. Intuitively, a worker votes ‘yes’ for every tile that is contained
in their segmentation, and ‘no’ for every tile that is not. As shown
in Figure 3 (right), tile ¢, is voted ‘yes’ by worker 1, 2, and 3; tile
13 is voted ‘yes’ by worker 2 and 3. The goal of our aggregation
algorithms is to pick an appropriate set of tiles that effectively trades
off precision versus recall. This is equivalent to making a boolean
decision of “include tile in output”, or “yes” versus “don’t include
tile in output”, or “no” for each tile, given multiple boolean worker
votes for each tile. Thus we have projected the original problem of
generating a segmentation onto a boolean aggregation problem. We
focus on algorithms for the boolean decision problem setting for the
remainder of this section.

4.2 Majority Vote Aggregation (MV)

Majority Vote aggregation is a standard technique for boolean ag-
gregation in crowdsourcing. We treat each tile as an independent
boolean decision and assign equal weight to each worker’s votes,
thereby implictly assuming that all workers are equal. We include a
tile in the output segmentation if and only at least 50% of all workers
have voted “yes” for the tile. In practice, however, not all workers
are equal-—some workers tend to make more mistakes than others,
or have particular biases. Furthermore, not all tile decisions are
necessarily independent because our aggregate decisions on some
tiles could affect our belief of worker qualities, which in turn could
influence our aggregation decisions on other tiles. Next, we extend



our approach to capture and incorporate worker qualities into our
algorithms.

4.3 Worker Quality-Aware Algorithms

We intuitively describe three worker models that we experiment
with below. In our technical report, we formalize the notion of the
probability that a set of tiles forms the ground truth, and solve
the corresponding maximum likelihood problem, for each of these
worker models.

Worker quality models.
Let us first define some useful notation.

Let 7~ = {t;.} be the set of all non-overlapping tiles for an object i.
T is the ground truth tile set. T’ is some combination of tiles chosen
from 7. The indicator label [ ; is one when worker j votes on the
tile t; (i.e. the bounding box that he draws contains ;. ), and zero
otherwise. The indicator matrix consisting of tile indicator for all
workers is denoted as .

We propose three different worker error models describing the
probability of a worker j’s vote on a specific tile t, given the tile’s
inclusion in ground truth and a set of worker qualities Q;.

(1) Basic: single-parameter Bernoulli model, where g; is the
probability of the worker getting a tile correct. A worker is
correct when his vote (I;;) matches with the ground truth
inclusion of the tile (¢, € T). A worker makes an incorrect
response when their vote contradicts with the inclusion of the
tileinT ({ty €T & lkj =0}, {tx ¢T & lkj =1})

i, Lp=1
Pl € 7.Qj) = 147 Tk )
1-gj, lLi=0
(2) Large Small Area (LSA): The basic model equally weighs

all tiles, but intuitively a worker should be rewarded more
if they get a large-area tile correct. We use a two-parameter
Bernoulli to model two different tile sizes determined by a
threshold A*.
4j1, ljk = 1&A(ty) = A*
1-gj1, ljk = 0&A(t) = A*
qj2; ljk = 1&A(t) < A*
1-qj2, i =0&A(t) < A*
(3) Ground truth inclusion, large small area (GTLSA): We ob-
serve in our experiment that there can be many large area tiles
that lies outside of the ground truth drawn by workers who
tend to draw loose, overbounding boxes. Our 4 parameter
Bernoulli model distinguishes between false and true positive
rates, by taking into account the positive and negative regions
(i.e. regions that lies inside or outside of T). In the case where

plklty € T,Q5) = 2)

Alty) = A™:
p(Liklte € T,Q)) = ap1. L =1 5
] S =g Lx=0
, Lr=0
plilte 2 T,Q;) = 1Mk .
1- qni, ljk =1

From the worker error model, we can also derive the probabil-
ity that a tile is in ground truth p(t; € T1Qj,l;i) using Bayes
rule, assuming the prior probabilities as constant.

We can think of workers as agents that look at each pixel in an
image and label it as part of the segmentation, or not. Their actual
segmentation is the union of all the pixels that they labeled as being
part of their segmentations. Each pixel in the image is also either
included in the ground truth segmentation or not included in the
ground truth segmentation. We can now model worker segmentation
as a set of boolean pixel-level (include or don’t include) tasks, each
having a ground truth boolean value. Based on this idea, we explore
three worker quality models:

e Basic model: Each worker is captured by a single parameter
Bernoulli model, < q >, which represents the probability that
a worker will label an arbitrary pixel correctly.

o Ground truth inclusion model (GT): Two parameter Bernoulli
model < gp,qn >, capturing false positive and false negative
rates of a worker. This helps to separate between workers
that tend to overbound and workers that tend to underbound
segmentations.

e Ground truth inclusion, large small area model (GTLSA):
Four parameter model < qp;,qn;.qps,qns >, that distin-
guishes between false positive and false negative rates for
large and small tiles. In addition to capturing overbounding
and underbounding tendencies, this model captures the fact
that workers tend to make more mistakes on small tiles, and
penalizes mistakes on large tiles more heavily.

For our problem, we consider only finding tile regions that could
be constructed from worker bounding boxes. In other words, our
objective is to find the tile combination T’ that maximizes the prob-
ability that it is the ground truth p(T’=T), given a set of worker
qualities Q; and tile indicator labels j:

T = argmax p(T = T/llkj,Qj) 5)
TcT
Using Bayes rule we can rewrite this in terms of the posterior proba-
bility of the tile-based values(lkj) or worker-based values(Q;), which
we can use for the E and M step equations respectively.

4.4 Inference

For the E step, we assume T’ is ground truth and estimate the Q;
parameters. We can rewrite Eq.5 as:

p(T1Q), L) = p(li;10.T') (6)

where we treat the priors p(T”),p(Q;) as constants. Our goal is to
find the maximum likelihood parameters of Q;:

Qj = argmax p(Q; 1. T") ™
J
We use the binary random variable w to indicate whether the worker
makes a correct vote (w=1) or an incorrect vote(w=0) for a tile.
We can write the worker quality probability as the product of the
probabilities that they would assume these two independent states
(correct/incorrect).

p(Qj) = l—[qﬁ?j(w:ﬂ - qj]p(w:o) ®)
J

The closed form of the maximum likelihood solution for the Bernoulli
distribution reduces down to:
‘jj _ Ncorrect ©9)
Ntotal



For the M step, we maximize the likelihood of the tile combination
T’ for a fixed set of worker qualities, {Q;}. Following Eq.5 from
Bayes rule,

p(T"1Q5. k) ~ p(l1Q;. 1) (10)
Our optimization function is written as:
T’ =argmaxl_[p(lkj|Qj,lk) (11)
T2 [T’] j

The product over T’ can be further decomposed into its tile compo-
nents. The likelihoods of these tiles can be computed via the worker
error model:

= argmaxl_[ 1_[ p(tx € TIQj. L) 1_[ Pt & T1Qj. l)
T2ATY 75 Liger 13T’
12)
Since the space of possible {T’} to search through is 2V where
number of tiles (N) for an average object with 30~40 worker is on
the order of thousands, we develop several strategies to narrow the
search space for making the problem computationally feasible.

Expectation-Maximization (EM). Unlike MV, which assumes
that all workers perform uniformly, EM approaches use worker qual-
ity models to infer the likelihood that a tile is part of the ground truth
segmentation. While simultaneously estimating worker qualities and
tile likelihoods as hidden variables, our basic worker quality model
that we evaluate in Section 7 assumes a fixed probability for a correct
vote. Details of the formal derivation and other more fine-grained
worker quality models can be found in our technical report.

Apart from constructing a set of {T’} for picking the best T’, we
can instead directly construct the maximum likelihood tile T* by
choosing tiles that satisfy the criterion:

T = {t|p(tx € Tk, Qj) = p(ty & Tk, 0))) (13)

Proof: We show that this tile-picking heuristic is at least as likely
as any tile combination that we would pick with the {T”} selection
method. Suppose there is a T’ such that it consists of the same tiles
as T*, but we randomly drop a tile ¢/

p(T" =TIk, Q)) = l_[P(tk eT) pltp ¢T7) (14)
23

By definition all tiles in T* must satisfy p(t; € T|lx,Q;) = p(ty ¢
T|lk,Qj), so the dropped tile must have lower probability than T’.

pT=T') =p(T" \ t)p(t; £ T) (15)
p(T =T =p(T* \ tp)p(t;, € T") (16)

By dropping multiple 5, from T* or adding ¢z, not previously in T*,
the above result can be generalized to arbitrary T”.

Greedy Tile Picking (greedy). In the previous algorithms, we
have tried to capture the probability of a tile being completely con-
tained in the ground truth and selected the union of high likelihood
tiles as our final output segmentation. In reality, tiles near the bound-
ary of the object being segmented often have a partial overlap with
the ground truth. Since our algorithms either include or exclude
entire tiles from the final output, it is not possible for the boundary
of our segmentation to be perfect. The greedy algorithm we describe
in this section attempts to alleviate this problem by heuristically
picking tiles based on their cost vs benefit trade-off. This algorithm

Data: fixed Q;
Initialize T*;
for t; € 7 do
ifp(ty €T) > p(ty ¢ T) then
| T «T"Uty;
end
end
Algorithm 1: M step algorithm. For the initialization of T*, we
could start from either an empty set or a high-confidence tileset.
The set of 7 to chose from can either be the set of all tiles or all
tiles adjacent to T*.

aims to effectively trade off precision (decreased by including tiles
and increased by excluding tiles) vs recall (increased by including
tiles and decreased by excluding tiles) to optimize for the jaccard
similarity of our output segmentation as compared to the underlying
ground truth.

The greedy algorithm picks tiles in descending order based on the
ratios of overlap area to non-overlap area (both with respect to
ground truth), for as long as the estimated Jaccard similarity of the
resulting segmentation continue to increase. Since the tile overlap
and non-overlap against ground truth are unknown, we use tile-
inclusion probabilities from EM to estimate these areas as a heuristic.
Furthermore, since we cannot compute the actual Jaccard similarity
against the unknown ground truth, we use a heuristic baseline such
as MV as a proxy for the ground truth. Intuitively, tiles that have
a high overlap area and low non-overlap area contribute to high
recall, at the cost of relatively little precision error. We include a
proof in our technical report showing that picking tiles in such an
order maximizes the Jaccard similarity of the resulting segmentation
locally at every step. While we have focused on optimizing for
jaccard score here, the greedy algorithm is flexible and can be easily
adapted for any objective metric that we might wish to optimize.

5 PERSPECTIVE RESOLUTION

As discussed in Section 3, disagreements often arise in segmenta-
tion due to differing worker perspectives on large tile regions. We
developed a clustering-based preprocessing approach to resolve this
issue. In order to group together segmentations with similar perspec-
tives, we compute a NxN distance matrix where N is the number
of workers based on the Jaccard similarity between each pair of
segmentations. Our intuition is that workers with similar perspec-
tives will have segmentations that are close to each other. Using the
distance matrix, we then perform spectral clustering to separate the
segmentations into clusters.

Figure 4 illustrates how spectral clustering divides the worker
segmentations into clusters with meaningful semantic associations,
reflecting the diversity of perspectives for the same task. Clustering
results can also be used as a preprocessing step for any quality
evaluation algorithm by keeping only the segmentations that belong
to the largest cluster, which is typically free of semantic errors.

In addition, clustering offers the additional benefit of preserving
worker’s semantic intentions. For example, while the green cluster
in Figure 2 (bottom right) would be considered bad segmentations
for the particular task (‘computer’), this cluster can provide more
data for another segmentation task corresponding to ‘monitor’. A
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Figure 4: Exampe image showing clustering performed on the same
object from Figure 2 left and middle.

potential future work direction would be to crowdsource the semantic
labels for the computed clusters to enable the reuse of segmentations
across multiple objects to lower costs.

6 EXPERIMENTAL SETUP
6.1 Dataset Description

We collected crowdsourced segmentations from Amazon Mechanical
Turk; each HIT consisted of one segmentation task for a specific
pre-labeled object in an image. There were a total of 46 objects in 9
images from the MSCOCO dataset [12] segmented by 40 different
workers each, resulting in a total of 1840 segmentations. Each task
contained a keyword for the object and a pointer indicating the
object to be segmented. Two of the authors generated the ground
truth segmentations by carefully segmenting the objects using the
same task and interface.

A sub-sampled dataset was created from the full dataset to deter-
mine the efficacy of these algorithms on varying number of worker
responses. Every object was randomly sampled worker with replace-
ment. For small worker samples, we average our results over larger
number of batches than for large worker samples (which have lower
variance, since the sample size is close to the original data size).

6.2 Evaluation Metrics

Evaluation metrics used in our experiments measure how well the
final segmentation (S) produced by these algorithms compare against
ground truth (GT). The most common evaluation metrics used in the
literature[4, 12, 15, 16] are area-based methods that take into account
the intersection area, IA = area(S N GT), or union area, UA =
area(S U GT) between the worker and ground truth segmentations,

including Precision (P) = a{’?t(ls(_)s)’ Recall (R) = #((“2”, and
Jaccard (J) = %(SS)).

6.3 Baseline Algorithms
Retrieval-based Methods

Number of Control Points (num pts): This algorithm picks the
worker segmentation with the largest number of control points
around the segmentation boundary (i.e., the most precise drawing)
as the output segmentation [17, 19]. Intuitively, workers that have
used a larger number of points are likely to have been more precise,
and provided a more complex and accurate segmentation.

Average worker: This baseline computes the average Jaccard across
all workers, which simulates collecting only a single worker annota-
tion.

Original k=100

& SR 2% .
Figure 5: Example of the vision color tiling for different chosen gran-
ularities. Left: Raw image. Vision segmentation with k = 100(Center)
and k = 500 (Right). Vision tiles with a significant overlap area with the
worker segmentation (white boundaries) is selected.

Best worker: Selecting the best worker based on Jaccard against
ground truth.

Vision-based Methods

We implement a semi-supervised algorithm that can produce
segmentations for arbitrary objects in the absence of large volumes
of tailor-made training data. While this algorithm works largely on
raw image data, it requires some external help in the form of one
“reference” segmentation. Intuitively, a rough segmentation can be
thought of as a pointer for the algorithm to the relevant regions of
the image. The algorithm then uses the color profile of the image to
segment out the similarly colored regions of the image that overlap
with the reference segmentation. Specifically, we begin by splitting
the input image into multiple regions, or tiles that have the same
color using the work of [7]—the desired number of output tiles can
be modified using a tuning parameter k, to produce finer or coarser
tiles.

We used the popular open source segmentation algorithm devel-

oped by Felzenszwalb and Huttenlocher [7]. We fixed the smoothing
and minimum component size parameters and varied the threshold
determining the how refined the segmentation is. As shown in Fig-
ure 5, larger values for k result in larger components in the result.
We overlay the given rough segmentation on top of the color tiles.
Average vision:
Best vision: Now, the algorithm focuses on choosing the right set
of tiles based on the given reference segmentation. Intuitively the
algorithm picks color tiles that have significant overlap with the given
reference segmentation, i.e., returns the union of all tiles for which
greater than a certain area threshold of the tile is intersecting with the
reference segmentation. We experiment with different granularities
for the vision preprocessing as well as scan a variety of tile filtering
area thresholds.

7 EXPERIMENTAL RESULTS

Aggregation-based methods perform significantly
better than retrieval-based methods.

In Figure 6, we vary the number of worker segmentations along the x-
axis and plot the average Jaccard score on the y-axis across different
worker samples of a given size across different algorithms. Figure 6
(left) shows that the performance of aggregation-based algorithms
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Figure 6: Performance of the original algorithms that do not make use
of ground truth information (Left) and ones that do (Right). MV and
EM results are so close that they overlay on each other.

(greedy, EM) exceeds the best-achievable through existing retrieval-
based method (Retrieval). Then, in Figure 6 (right), we estimate the
upper-bound performance of each algorithm by assuming that the
“full information’ based on ground truth was given to the algorithm.
For greedy, the algorithm is aware of all the actual tile overlap
and non-overlap areas against ground truth, and does not need to
approximate these values. For EM, we consider the performance of
the algorithm if the true worker quality parameter values (under our
worker quality model) are known. For retrieval, the full information
version directly picks the worker with the highest Jaccard similarity
with respect to the ground truth segmentation. By making use of
ground truth information (Figure 6 right), the best aggregation-based
algorithm can achieve a close-to-perfect average Jaccard score of
0.98 as an upper bound, far exceeding the results achievable by
any single ‘best” worker (J=0.91). This result demonstrates that
aggregation-based methods are able to achieve better performance
by performing inference at the tile granularity, which is guaranteed
to be finer grained than any individual worker segmentation.

The performance of aggregation-based methods
scale well as more worker segmentations are added.

Intuitively, larger numbers of worker segmentations result in finer
granularity tiles for the aggregation-based methods. The first row
in Table 1 lists the average percentage change in Jaccard between
5-workers and 30-workers samples, demonstrating a monotonically
increasing relationship between number of worker segmentations
used and the performance. However, retrieval-based methods do not
benefit from more segmentations.

Retrieval-based Aggregation-based
Algorithm num pts | worker* | MV | EM | greedy | greedy*
Worker Scaling -6.30 2.58 2.12 | 1.78 | 2.07 5.38
Clustering Effect | 5.92 -0.02 2.05 | 0.03 | 5.73 0.283

Table 1: Jaccard percentage change due to worker scaling and cluster-
ing. Algorithms with * makes use of ground truth information.

Clustering as preprocessing improves algorithmic
performance.

The average percentage change between the no clustering and clus-
tering results is shown in Table 1. Clustering generally results in an

accuracy increase. Since the ‘full information’ variants are already
free of semantic ambiguity and errors, clustering does not assist with
further improvement.

The clustering preprocessing step can significantly improve per-
formance of algorithms that are not very robust to segmentations
with semantic errors or ambiguities, such as the heuristic-based num-
ber of points approach. When examining the gap of increase with
and without clustering in Figure 7, we find that aggregation-based
methods performs better than retrieval-methods exhibits a smaller
gap between the performances. This effect is due to aggregation-
based method’s higher performance in the no cluster case, indicating
that it is able to capture some of the semantic ambiguities and errors
in the dataset.

Effects of Clustering
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Figure 7: Performance comparisons between averaging over experi-
ments with clustering as a preprocessing step (dotted) and the unclus-
tered results (solid) for different algorithms.

How well does the inferred worker qualities predict
individual worker performance?

Correlation of worker qualities against performance To further
investigate how the EM models are performing, we looked at whether
the model-inferred worker qualities is indicative of the actual quality
of a segmentation. We performed linear fitting independently for
each sample-objects and computed the R? statistics to determine
whether worker qualities can accurately predict precision, recall,
and Jaccard scores. Visual inspection of the basic worker quality
model fitting showed that for objects that suffered from type two
errors (semantic ambiguity), the single-parameter worker quality
was unable to capture the overbounding behavior, which lead to a low
precision and Jaccard. The results are listed in Table 2 to highlight
how our advanced worker qualities were able to better capture these
scenarios. The clustering preprocessing was not performed for the
values in Table 2 to demonstrate the sole effect of the EM algorithm.
Nevertheless, our clustered results also show a similar trend, with an
average of R?=0.88 and 0.89 for the GT and GTLSA models across
all objects respectively. We also find that in general the linear fit
improves as the number of data points increases, which indicates
consistency in the fitted model.

Best worker quality retrieval One application of worker qualities is
that it could be used as an annotation scoring function for retrieving



N  basic GT  GTLSA isobasic isoGT isoGTLSA

5 0.601 0.907 0.901 0.576 0.907 0.904

10 0.632 0.895  0.899 0.633 0.895 0.898

15 0.622 0.897 0.898 0.622 0.897 0.897

20 0.636 0.894  0.899 0.637 0.894 0.898

25  0.66 0.901 0.905 0.661 0.901 0.904

30 0.673 0907 @ 0914 0.676 0.907 0.913
Table 2: Linear correlation of worker qualities against ground truth
performance for different quality models across different number of
workers (N). The lower worker samples exhibit lower R?> due to the
variance from smaller number of datapoints for each independent fit.

the best quality worker segmentation. We explore this approach by
training a linear regression model for every sample-object and use
the worker qualities to predict the precision, recall, and Jaccard of
individual worker annotations against ground truth. Then, we query
the model with the inferred worker quality and retrieve the worker
with the best predicted Jaccard.

The reason why a linear regression model was chosen rather
than simply sorting the worker qualities and picking the best is that
sorting based on multiple worker qualities (precision, recall, Jaccard)
effectively applies equal weighting to all quality attributes, whereas
our advanced models are specifically designed to capture cases of
false-positives and false-negatives that can yield drastically different
recall and precision values. We have tested that the linear regression
model performs better on this task that simple sorting is capable
of learning the weights that helps it make better predictions. As
shown in Table 3, the performance of worker-quality based retrieval
is comparable the performance other aggregation-based methods.
We find that amongst the different worker quality models, advanced
worker quality models perform the best, agreeing with our intuition
regarding correlation results observed in Table 2.

algo/N 5 10 15 20 25 30
num points  0.838 0.809 0.826 0.805 0.814 0.785
best worker  0.891 0.902 0.905 0.909 0.912 0.914

MV 0.885 0.893 0.894 0.897 0.898 0.899
EM][basic] 0.884 0.893 0.894 0.897 0.898 0.899
EMI[GT] 0.885 0.893 0.894 0.897 0.898 0.899
EM[GTLSA] 0.871 0.892 0.891 0.896 0.897 0.899
greedy 0.888 0.896 0.896 0.902 0.905 0.906

wqr[basic] 0.878 0.877 0.877 0.877 0.878 0.878
wqr[GT] 0.884 0.885 0.885 0.885 0.887 0.887
wqr[GTLSA] 0.874 0.881 0.883 0.885 0.886 0.887
Table 3: Summary of average performance across workers with cluster-
ing applied as preprocessing in all algorithms across different number
of workers (N). wqr is the abbreviation for best worker quality retrieval
methods.

8 CONCLUSION AND FUTURE WORK

We identified three different types of errors for crowdsourced image
segmentation, developed a clustering-based method to capture the
semantic diversity caused by differing worker perspectives, and
introduced novel aggregation-based methods that produce more
accurate segmentations than existing retrieval-based methods.

Our paper show that our worker quality models are good indica-
tors of the actual accuracy of worker segmentations. We also observe

that the greedy algorithm is capable of achieving close-to-perfect
segmentation accuracy with ground truth information. Given the suc-
cess of aggregation-based methods, including the simple majority
vote algorithm, future work includes using our worker quality in-
sights to improve our EM and greedy algorithms and using computer
vision signals to further improve our algorithms.
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